Aim: How do we use completing the square to graph quadratic equations?

I. Do Now:

1. Sketch the graph of y = |x + 2| + 1

2. (a) Sketch the graph of $y = (x-2)^2 + 3$

(b) How can you transform the the equation below into the form given in #2 (a)?

$$y = x^2 - 8x + 12$$

II. Review:

III. Recall:

- 3. $(x-3)(x-3) = x^2 6x + 9$
- 4. For value of *k* will each trinomial be a perfect square?
 - (a) $x^2 12x + k$ (b) $x^2 + 3x + k$

IV. Applications: Write each quadratic equation in vertex form
$$y = a(x - h)^2 + k$$
 and sketch its graph.

$$5. \quad y = x^2 - 8x + 12$$

$$6. \quad y = x^2 + 10x + 28$$

$$8. \quad y = -x^2 + 4x - 8$$

9.
$$y = 2x^2 - 20x + 51$$

10.
$$y = 3x^2 + 36x + 107$$

MPS21 Homework 23

1. Solve by factoring:

(a)
$$x^2 - 2x - 8 = 0$$

(b)
$$x^2 + 9 = 6x$$

(c)
$$x^2 - 8x = -15$$

- 2. For each equation below:
 - (i) Find the axis of symmetry $(x = \frac{-b}{2a})$ to obtain the x-coordinate of the vertex.
 - (ii) Substitute the value you found for x in order to find the y-coordinate of the vertex.
 - (iii) Plot the vertex and use the 1a, 3a, 5a, ... method to graph the parabola.
 - (iv) Identify the roots of the equation (i.e., the zeros or x-intercepts)

(a)
$$y = x^2 - 2x - 8$$

(b)
$$y = x^2 - 6x + 9$$

(c)
$$y = x^2 - 8x + 15$$

3. Complete the square to write each equation in vertex form ($y = a(x - h)^2 + k$) and then use the equation in vertex form to sketch the graph. Identify the roots from your graph.

(a)
$$y = x^2 - 2x - 8$$

(b)
$$y = x^2 - 6x + 9$$

(c)
$$y = x^2 - 8x + 15$$

4. Write in vertex form and sketch the graph: $y = 2x^2 - 4x + 3$

