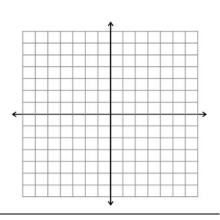
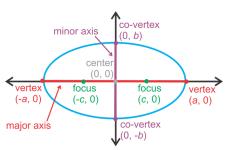

Aim: Ellipses


I. Do Now:

1. Graph each ellipse.

(a)
$$4x^2 + 25y^2 = 100$$



(b)
$$25x^2 + 4y^2 = 100$$

II. Terminology:

An *ellipse* is the locus of all points whose total distance from two fixed points (called the *foci*) is constant.

horizontal major axis

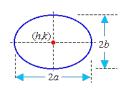
Length of Major Axis: _____

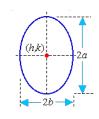
Length of Minor Axis: _____

c = the distance from the center to each focus

Eccentricity (e): a value that describes the "roundness" of the ellipse.

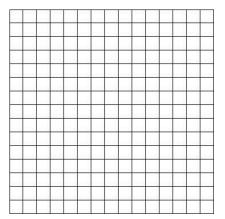
$$e = \frac{c}{a}$$


In an ellipse, 0 < e < 1. If e = 0, the graph is a circle.


How do we find the foci if we know the values of a and b? (i.e., find an equation that relates a, b, and c.)

III. Standard Form of the Equation of An Ellipse: If 0 < b < a and the center is (h, k),

$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$$
 is an ellipse with a *horizontal* major axis.


 $\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$ is an ellipse with a *vertical* major axis.

IV. Applications:

- 2. Find the standard form of the equation of an ellipse with foci at (0, 1) and (4, 1) and a major axis of length 6.
- 3. Sketch the graph of the ellipse whose equation is $x^2 + 4y^2 + 6x 8y + 9 = 0$.

4. (if time) Find the center, vertices, and foci of the ellipse given by $4x^2 + y^2 - 8x + 4y - 8 = 0$.