## Problems Involving Continuity

In $1-4$, sketch the graph of a function $f$ that satisfies the stated conditions.

1. $f$ has a limit at $x=3$, but it is not continuous at $x=3$.
2. $f$ is not continuous at $x=3$, but if its value at $x=3$ is changed from $f(3)=1$ to $f(3)=0, f$ becomes continuous at $x=3$.
3. $f$ has a removable discontinuity at $x=c$ for which $f(c)$ is undefined.
4. $f$ has a removable discontinuity at $x=c$ for which $f(c)$ is defined.

In $5-6$, use the definition of continuity to prove that the function is discontinuous at the given value of $a$.
5. $f(x)=\frac{x^{2}-5 x+4}{x-1}, a=1$
6. $f(x)=\left\{\begin{array}{cc}\frac{x^{2}-5 x+4}{x-1} & \text { if } x \neq 3 \\ 1 & \text { if } x=3\end{array}, \quad a=3\right.$

## Problems Involving Continuity

In $7-9$, use the definition of continuity to find the values of $k$ and $m$, if possible, that will make the function continuous everywhere.
7. $f(x)= \begin{cases}m x-1, & x<-1 \\ -x^{2}+1, & -1 \leq x<2 \\ \frac{1}{2} x+k, & x \geq 2\end{cases}$
8. $\quad f(x)=\left\{\begin{array}{cl}x^{2}+5, & x>2 \\ m(x+3)+k, & -1<x \leq 2 \\ 2 x^{3}+x+7, & x \leq-1\end{array}\right.$
9. $f(x)= \begin{cases}x-2, & x \leq-1 \\ k x-m x^{2}, & -1<x<1 \\ -2 x+3, & x \geq 1\end{cases}$

