In $1-4$, find $\frac{d y}{d x}$ in completely factored form.

1. $y=x^{2}(x-2)^{4}$
2. $y=x(3 x-9)^{3}$
3. $y=\left(\frac{2 x+4}{3 x-1}\right)^{3}$
4. $y=(4 x-1)^{10}\left(3 x^{2}-2\right)^{6}$
5. Given $y=(5 x-1)^{4}(2 x+3)$.
(a) Find $\frac{d y}{d x}$ in completely factored form.
(b) State all x values where the tangent line is horizontal.
6. Refer to the table of values below.
i) Find $f^{\prime}(6)$ given that $f(x)=h(x) \cdot g(x)$.

x	6	11
$g(x)$	11	-4
$g^{\prime}(x)$	7	-1
$h(x)$	2	5
$h^{\prime}(x)$	-1	7

ii) Find $f^{\prime}(11)$ given that $f(x)=\frac{g(x)}{h(x)}$.
iii) Find $f^{\prime}(6)$ given that $f(x)=h(g(x))$.

