MCS21-Calculus

Exam 3 Review Sheet
Topics:

- the definition of continuity
- the definition of the derivative
- the alternate definition of the derivative
- the power rule
- non-differentiability of functions (corner/cusp, points of discontinuity, vertical tangent)
- differentiability of piecewise-defined functions

Practice:

1. Find the derivative of each function.
(a) $y=3 x+4 x^{2}$
(b) $f(x)=5 \pi^{2} x-8 x^{4}$
(c) $h(x)=-2 x^{5}+5 \sqrt{x}-\sqrt[3]{x}$
2. Use the definition of the derivative to find $f^{\prime}(x)$ if
(a) $f(x)=\sqrt{x+2}$
(b) $f(x)=x^{2}-5 x+1$
3. Use the alternate definition of the derivative to find $f^{\prime}(1)$ if $f(x)=\frac{7}{x-4}$.
4. Given $f(x)=\left\{\begin{array}{cc}x^{2}-1 & x \neq 1 \\ 4 & x=1\end{array}\right.$. Which of the following are true? Explain.
(i) $\lim _{x \rightarrow 1} f(x)$ exists
(ii) $f(1)$ exists
(ii) f is continuous at $x=1$
5. Find $\frac{d x}{d \theta}$ if $x=2 \theta^{-2}-\theta$
6. If $f^{\prime}(a)$ does not exist, which of the following must be true?
(A) $f(x)$ is discontinuous at $x=a$.
(D) f has a "hole" at $x=a$.
(B) $\lim _{x \rightarrow a} f(x)$ does not exist.
(E) None of the above must be true.
(C) f has a vertical tangent at $x=a$.
7. Which statement is true for the function $f(x)$, if $f(x)=\left\{\begin{array}{l}x+1, \text { if } x \leq 1 \\ x^{2}+1, \text { if } x>1\end{array}\right.$?
(A) $f(x)$ is continuous and differentiable at $x=1$.
(B) $f(x)$ is continuous but non-differentiable at $x=1$.
(C) $f(x)$ is not continuous but is differentiable at $x=1$.
(D) $f(x)$ is not continuous and also non-differentiable at $x=1$
(E) $\quad f(x)$ has a removable discontinuity and is differentiable at $x=1$.
8. Let $f(x)=\left\{\begin{array}{cc}x^{3}+16 & x<\frac{1}{2} \\ \frac{3}{4} x^{2} & x \geq \frac{1}{2}\end{array}\right.$. Determine whether f is differentiable at $x=\frac{1}{2}$. If so, find the value of the derivative there.
9. Let $f(x)=\left\{\begin{array}{cc}x^{2} & x \leq 2 \\ m x+b & x>2\end{array}\right.$. Find values of m and b that make f differentiable everywhere.
10. Use accompanying graph of $f(x)$ to answer parts (a) through (h) below.
(a) $\lim _{x \rightarrow-2} f(x)=$ \qquad
(b) $f^{\prime}(3)=$ \qquad
(c) $f(2)=$ \qquad
(d) $f(-2)=$ \qquad
(e) Create a true statement by filling in the box with one of the three symbols: >, <, or $=$.

$$
f^{\prime}\left(-\frac{1}{2}\right) \square f^{\prime}\left(\frac{3}{2}\right)
$$

(f) State all values of x where $f(x)$ is discontinuous.
(g) State all values of x where $f(x)$ is not differentiable.
(h) The value of $f^{\prime}(x)$ is zero when:
(A) $x=-1$
(B) $x=0$
(C) $x=1$
(D) $x>2$
(E) $x<-1$
11. Let $f(x)=\left\{\begin{array}{ll}3 b x^{3}-2 & x \geq 1 \\ x^{2}-a x^{4} & x<1\end{array}\right.$. Find the values of a and b such that $f(x)$ is differentiable at $x=1$.
12. Find $\frac{d y}{d x}$ in simplest form.
(a) $y=\frac{-3}{x^{6}}-2 x^{\frac{11}{7}}$
(b) $y=\sqrt[5]{x^{3}}+\pi x-2$
(c) $y=k x^{4}-7 c x^{3}+11 d^{2}$
(c, k, and d are constants)

