MCS21 (Calculus) Exam 2 Review Problems

(b)
$$\lim_{x \to 3^+} f(x) =$$

(c)
$$\lim_{x \to 3} f(x) =$$

(d)
$$\lim_{x \to 6} f(x) =$$

(e)
$$\lim_{x \to -\infty} f(x) =$$

(f)
$$f(6) =$$

2. Use limits to find the values of a and b that make the function

$$f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & x < 2\\ ax^2 - bx + 3 & 2 \le x < 3 & \text{continuous everywhere.} \\ 2x - a - b & x \ge 3 \end{cases}$$

3. Let
$$f(x) = \begin{cases} \frac{x^2 - 16}{x - 4} & x \neq 4 \\ 10 & x = 4 \end{cases}$$

which of the following statements are true?

I. $\lim_{x\to 4} f(x)$ exists.

III. f is continuous at x=4

I.
$$\lim_{x\to 4} f(x)$$
 exists

II.
$$f(4)$$
 exists.

III.
$$f$$
 is continuous at $x = 4$

4. Given $f(x) = \frac{x^3 - 12x^2 + 32x}{x^2 - 2x - 8}$, state the following. Show all work below.

(If there are none, state "none.")

a) equation(s) of any vertical asymptotes:

b) equation(s) of any horizontal asymptotes:

c) coordinates of any removable points of discontinuity ("holes"):