MCS21 (Calculus) Exam 2 Review Problems

1. (a) $\lim _{x \rightarrow 3^{-}} f(x)=$ \qquad
(b) $\lim _{x \rightarrow 3^{+}} f(x)=$ \qquad
(c) $\lim _{x \rightarrow 3} f(x)=$ \qquad
(d) $\lim _{x \rightarrow 6} f(x)=$ \qquad
(e) $\lim _{x \rightarrow-\infty} f(x)=$ \qquad
(f) $f(6)=$ \qquad

2. Use limits to find the values of a and b that make the function
$f(x)=\left\{\begin{array}{ll}\frac{x^{2}-4}{x-2} & x<2 \\ a x^{2}-b x+3 & 2 \leq x<3 \\ 2 x-a-b & x \geq 3\end{array}\right.$ continuous everywhere.
3. Let $f(x)=\left\{\begin{array}{cc}\frac{x^{2}-16}{x-4} & x \neq 4 \\ 10 & x=4\end{array}\right.$

Which of the following statements are true?
I. $\lim _{x \rightarrow 4} f(x)$ exists.
II. $f(4)$ exists.
III. f is continuous at $x=4$
4. Given $f(x)=\frac{x^{3}-12 x^{2}+32 x}{x^{2}-2 x-8}$, state the following. Show all work below.
(If there are none, state "none.")
a) equation(s) of any vertical asymptotes:
b) equation(s) of any horizontal asymptotes:
c) coordinates of any removable points of discontinuity ("holes"):

