Aim: What are the trigonometric half angle identities?

Do Now:

1. If
$$\cos x = -\frac{5}{8}$$
 and angle x is in 2. Prove the identity:
Quadrant II, find $\cos 2x$.
$$\frac{1 - \tan^2 x}{3} = \cos 2x$$

$$\frac{1 - \tan^2 x}{\sec^2 x} = \cos 2x$$

$$\cos\left(\frac{1}{2}x\right) =$$

$$\sin(\frac{1}{2}x) =$$

$$\tan\left(\frac{1}{2}x\right) =$$

The sign depends on the quadrant in which $\frac{1}{2}x$ lies.

II. Derivation of Half Angle Identities

- 3. Recall that $\cos 2A = 1 2\sin^2 A$.
 - (a) Substitute $\frac{1}{2}x$ for A:
 - (b) Solve the equation you wrote in part (a) for $\sin(\frac{1}{2}x)$.
- 4. Recall that $\cos 2A = 2\cos^2 A 1$
 - (a) Substitute $\frac{1}{2}x$ for A:
 - (b) Solve the equation you wrote in part (a) for $\cos(\frac{1}{2}x)$.

5. Find $\tan(\frac{1}{2}x)$.

III. Applications

- 6. If $\cos x = \frac{4}{5}$ and x is an acute angle, find $\tan\left(\frac{x}{2}\right)$.
- 7. If $\cos \theta = -\frac{14}{64}$ and θ is in Quadrant III, find:
 - (a) $\cos \frac{1}{2}\theta$ (b) $\sin \frac{1}{2}\theta$ (c) $\tan \frac{1}{2}\theta$

- 8. If $\sin x = \frac{5}{13}$ and $\frac{\pi}{2} < x < \pi$, find the exact value of $\cos \frac{x}{2}$.
- 9. If $\tan A = -\sqrt{\frac{1 \cos 210^{\circ}}{1 + \cos 210^{\circ}}}$ and angle A is obtuse, find the measure of angle A.
- 10. If $\sin \theta = \sqrt{\frac{1 \cos \frac{\pi}{3}}{2}}$ and θ terminates in Quadrant I, find θ .
- 11. Find the exact value of $\tan \frac{5\pi}{8}$.

- p. 390: 45abc, 48, 57, 61, 62, 63
- p. 396: 28, 86