Aim: Practice with Synthetic Division and the Remainder Theorem

I. <u>Do Now:</u>

Given the equation $x^3 - 11x - 4x^2 + 30 = 0$.

- (a) Is the equation in standard form?
- (b) Is x = 1 a root?
- (c) Is x = 2 a root?
- (d) Find all roots.
- (e) If $f(x) = x^3 11x 4x^2 + 30$, find f(1).
- (f) Divide: $\frac{x^3 11x 4x^2 + 30}{x 1}$

II. <u>Development:</u>

The Remainder Theorem: If a polynomial f(x) is divided by (x-k), the remainder is _____.

II. Applications:

1. If one root of $x^3 - 24x - 3x^2 + 80 = 0$ is $x = -5$, find all roots.	2. Find the remainder when $x^5 - 3x^3 - 7x^2 + 11$ is divided by $x + 3$.	 3. Given the polynomial 2x⁴ + 7x³ - 4x² - 27x - 18, (a) Show that (x - 2) and (x + 3) are factors. (b) Factor the polynomial completely.
III. More Practice (if time): 4. When $x^3 + kx + 1$ is divided by $x - 2$, the remainder is -3 . Find the value of <i>k</i> .	5. When $x^3 + kx^2 - 2x - 7$ is divided by $x + 1$, the remainder is 5. What is the remainder when it is divided by $x - 1$?	*6. Use the Remainder Theorem to find the remainder when $2x^2 - 3x + 5$ is divided by 2x - 1. $\frac{HW7}{Factor completely: 8x^6 - 27}$ p. 124-125: 13, 28, 29, 31, 39, 43, 47, 48