MCS21 Homework 9

1. Find a value for the constant k, if possible, that will make the function continuous.

(a)
$$f(x) = \begin{cases} 7x - 2 & x \le 1 \\ kx^2 & x > 1 \end{cases}$$

(b)
$$f(x) = \begin{cases} kx^2 & x \le 2 \\ 2x + k & x > 2 \end{cases}$$

2. On which of the following intervals is $f(x) = \frac{1}{\sqrt{x-2}}$ continuous? *Justify your answer*.

(a)
$$[2, +\infty)$$

(a)
$$[2, +\infty)$$
 (b) $(-\infty, +\infty)$

(c)
$$(2, +\infty)$$

3. Use the definition of continuity to determine whether the function below is continuous at x = 3 and at x = -3. Justify your answer using the definition of continuity.

$$f(x) = \begin{cases} \frac{x^3 - 27}{x^2 - 9} & x \neq 3\\ \frac{9}{2} & x = 3 \end{cases}$$

4. Refer to the graph of f(x) shown below.

State all x-values where f(x) is discontinuous. For each point of discontinuity, state whether the discontinuity is removable or non-removable.

5. Find each limit.

(a)
$$\lim_{x \to -\infty} \frac{\sqrt{9x^6 - x}}{x^3 + 1}$$

(b)
$$\lim_{x \to -\infty} \frac{x}{\sqrt[4]{x^4 + 1}}$$

6. Find the value of a and b so that f(x) is continuous.

$$f(x) = \begin{cases} ax - 1 & x < -1 \\ -x^2 + 1 & -1 \le x < 2 \\ \frac{1}{2}x + b & x \ge 2 \end{cases}$$