MCS21 – Calculus Exam 5 Review Sheet

1

For each of the following, find f'(x). 1.

(a)
$$f(x) = \tan^2 4x$$
 (e) $f(x) = \tan x - \sec x$
(b) $f(x) = \sqrt{\sin x}$ (f) $f(x) = \cos^3(2x + 1)$

(b)
$$f(x) = \sqrt{\sin x}$$
 (f) $f(x) = \cos^3(2x+1)$

(c)
$$f(x) = \frac{\sec x}{\tan x}$$
 (g) $f(x) = x^2 \cos x$

(d)
$$f(x) = x^3 \cot x$$
 (h) $f(x) = \frac{1}{2 \sin 2x}$

2. If $f(x) = \sin 2x$, find f''(x).

3. If
$$f(x) = \tan x$$
, find $f''(x)$.

If $f(x) = \sin x + \cos x$, find f''(x) + f'(x). 4.

5. If
$$f(x) = \cos x \sin 3x$$
, find $f'\left(\frac{\pi}{6}\right)$.

6. Write the equation of the line normal to the graph of
$$y = \sqrt[3]{x^2 - 1}$$
 at the point where $x = 3$.

Write the equation of the tangent line to the curve $x^2 + y^2 = 169$ at the point (5, -12). 7.

Find the coordinates of all points on the curve $y = 2x^3 - 3x^2 - 12x + 20$ where the tangent line is 8. horizontal.

9. If
$$x^2y + y^3 = 10$$
, find $\frac{dy}{dx}$ at the point (1, 2).

- Write the equation of the tangent line to the graph of $y = 3\cot^2 x$ at $x = \frac{5\pi}{4}$. 10.
- Write the equation of the normal line to the graph of $y = 3\tan(2x)$ at $x = \frac{5\pi}{12}$. 11.

12. Find
$$\frac{dy}{dx}$$
 if $-2x^2 + x^3y = 1 + 5y$.

Find $\frac{d^2y}{dx^2}$ at the point (-1, 2) in simplest form if $y^2 + 2x^3 = y$. 13.

14. Find
$$\frac{dy}{dx}$$
 if $y = 4\sin^5(\sec(2x^3))$.